

Available online at www.sciencedirect.com

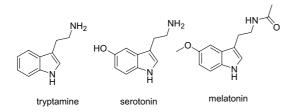
Tetrahedron Letters 45 (2004) 3123-3126

Tetrahedron Letters

Efficient one-pot synthesis of tryptamines and tryptamine homologues by amination of chloroalkynes

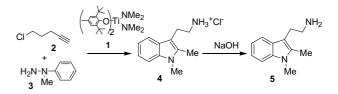
Vivek Khedkar, Annegret Tillack, Manfred Michalik and Matthias Beller*

Leibniz-Institut für Organische Katalyse (IfOK) an der Universität Rostock e.V., Buchbinderstr. 5-6, D-18055 Rostock, Germany


Received 30 January 2004; revised 12 February 2004; accepted 17 February 2004

Abstract—A new method was developed for the one-pot synthesis of substituted 3-(2-aminoethyl)- and 3-(3-aminopropyl)indoles from commercially available aryl hydrazines and chloroalkylalkynes. Various tryptamine derivatives were prepared directly in good yield with excellent regioselectivity. The method involves a new domino reaction sequence consisting of a titanium-catalyzed amination of the chloroalkylalkyne, [3+3]-rearrangement of the resulting aryl hydrazone, and nucleophilic substitution of the chloride by ammonia.

© 2004 Elsevier Ltd. All rights reserved.


There is a continuing interest in the development of new methods for the synthesis of indoles due to their importance as building blocks for pharmaceuticals and natural products.¹ Among the numerous indole derivatives with biological activity tryptamine and its derivatives such as the neurotransmitter serotonin, and the tissue hormone melatonin constitute especially important examples (Scheme 1).²

Although many synthetic approaches have been developed, the Fischer indole reaction remains the most important method to substituted indoles.³ In this benchmark reaction aldehydes or ketones react with aryl hydrazines to give the corresponding hydrazones, which subsequently undergo a [3,3]-sigmatropic rearrangement to yield indoles in the presence of a Brønstedt or Lewis acid. Despite its versatility the Fischer indole reaction

Scheme 1. Examples of biologically active indoles.

with aldehydes constitutes a two-step procedure, which sometimes proceeds in low yield. For example, the direct synthesis of tryptamine-like compounds⁴ is sometimes troublesome due to side reactions of the free amino group with the aldehyde or ketone. Recently, Odom and co-workers described an interesting new titanium amidecatalyzed reaction of aryl hydrazines with alkynes.⁵ The obtained aryl hydrazones have been further used in the Fischer indole reaction, which allows for an elegant twostep (one-pot) synthesis of substituted indoles. Based on our long standing interest in catalytic hydroamination reactions of olefins⁶ and alkynes⁷ we studied the regioselective attack of aryl hydrazines on terminal alkynes with respect to the catalyst. During these investigations we discovered a new domino process using 1-chloro-4pentyne and N-methyl-N-phenylhydrazine as substrates. As shown in Scheme 2 and Table 1 the titanium-catalyzed hydroamination of 1-chloro-4-pentyne leads directly to the hydrochloride salt of N-methyl-2methyltryptamine (2-(1,2-dimethyl-1H-indol-3-yl)ethylamine hydrochloride) in good yield. This unusual one-pot conversion involves first a titanium-catalyzed

Scheme 2. A new domino process to tryptamines.

^{*} Corresponding author. Tel.: +49-381-4669313; fax: +49-381-4669-324; e-mail: matthias.beller@ifok.uni-rostock.de

Entry	Catalyst	Catalyst (mol%)	Time (h)	Temperature (°C)	Yield (%) ^b	
					4	5
1	1	2.5	52	60	<5	<5
2	1	2.5	16	80	61	59
3	1	2.5	4	100	79	78
4	1	2.5	1.5	120	77	67
5	1	5	4	100	84	80
6	1	5	24	100	86	82
7°	1	5	24	100	62	58
8	Ti(NMe ₂) ₄	5	24	100	33	24
9	$(\eta^5-Cp)_2Ti(\eta^2-Me_3SiC_2SiMe_3)$	10	24	100	64	54

Table 1. Reaction of 1-chloro-4-pentyne with N-methyl-N-phenylhydrazine^a

^a Reaction conditions: 1.1 mmol 1-chloro-4-pentyne, 1.4 mmol N-methyl-N-phenylhydrazine, 2 mL toluene.

^b Isolated yield based on 1-chloro-4-pentyne.

^c2 mL Tetrahydrofuran.

hydroamination of the alkyne to give the *N*-aryl-*N*-chloro-alkylhydrazone, then a [3,3]-sigmatropic rearrangement to the corresponding indole takes place and finally nucleophilic substitution of the halide by the liberated ammonia occurs.⁸ Advantageously, the in situ generated hydrochloride acid acts as an efficient catalyst for the Fischer indole reaction.

As catalyst for the amination reaction bis(2,6-di-*tert*butyl-4-methylphenoxo)-bisdimethylamide titanium **1** was used. **1** is easily synthesized from commercially available 2,6-di-*tert*-butyl-4-methylphenol and Ti(NMe₂)₄ in one step in good yield (72%),⁹ and has been introduced by us very recently as a highly chemoand regioselective hydroamination catalyst for terminal and internal alkynes with primary and secondary aliphatic amines, benzylamines, and anilines.¹⁰

Due to the highly selective Markovnikov reaction of the alkyne with the hydrazine, only the 2,3-disubstituted

indole is produced. As shown in Table 1 the model reaction proceeds in good yield in toluene in the presence of 2.5–5 mol% of catalyst at 80–120 °C (Table 1, entries 2–6). Below 80 °C basically no conversion is observed. Interestingly, in the amination step in all reactions using 1 as catalyst excellent regioselectivities (>99%) toward the Markovnikov product (internal regioisomer) are obtained. The importance of the aryloxo ligand is clearly shown by comparing reactions in the presence of 1 and Ti(NMe₂)₄ as catalysts (Table 1, entry 6 vs 8). Also, a well-known titanocene-type catalyst (η^5 -Cp)₂Ti(η^2 -Me₃SiC₂SiMe₃)¹¹ leads to a significant lower yield of the indole.

Next, we were interested in the compatibility of our new procedure with different aryl hydrazones (Table 2).¹² Apart from *N*-methyl-*N*-phenylhydrazine seven different aryl hydrazines with Me-, Cl-, F-, and MeO-substituents were reacted with 1-chloro-4-pentyne and 1-chloro-5-hexyne.

	$CI \longleftrightarrow_{n} \bigoplus_{H_{2}N-N} \stackrel{R^{3}}{\underset{R^{1}}{\overset{I}{\underset{R^{2}}{\overset{I}{\underset{R^{2}}{\overset{R^{3}}{\underset{R^{1}}{\overset{R^{2}}{\underset{R^{1}}{\overset{R^{3}}{\underset{R^{1}}{\underset{R^{1}}{\overset{R^{3}}{\underset{R^{1}}{\underset{R^{1}}{\overset{R^{3}}{\underset{R^{1}}{\underset{R^{1}}{\overset{R^{3}}{\underset{R^{1}}}{\underset{R^{1}}{\atopR^{1}}{\underset{R^{1}}{\underset{R^{1}}{I}{I}$									
Entry	Alkyne (n)	Aryl hydrazine			Catalyst	Time (h)	Product 7	Yield (%) ^b		
		R ₁	\mathbf{R}_2	R ₃	(mol%)			6	7	
1	2	CH ₃	Н	Н	5.0	24	$(CH_2)_2NH_2$ CH_3 CH_3	86	82	
2	2	CH ₃	CH ₃	Н	5.0	24	H_3C H_3C	65	60	
3	2	CH ₃	Cl	Н	5.0	24	$\begin{array}{c} CH_2)_2NH_2\\ CH_2\\ H_3\\ CH_3\\ CH_3\\ \end{array}$	70	68	
4	2	CH ₃	OCH ₃	Н	5.0	24	H ₃ CO (CH ₂) ₂ NH ₂ CH ₃ CH ₃	71	69	

Table 2. Reaction of chloroalkylalkynes with various aryl hydrazines^a

Table 2 (continued)

Entry	Alkyne (n)	Aryl hydrazine			Catalyst	Time (h)	Product 7	Yield (%) ^b	
		R ₁	\mathbf{R}_2	R ₃	(mol%)			6	7
5	2	Ph	Н	Н	5.0	24	(CH ₂) ₂ NH ₂ CH ₃ Ph	50	49
6	2	Bn	Н	Н	5.0	24	$(CH_2)_2NH_2$ H_2 H_3	90	89
7°	2	Bn	F	Cl	2.5	4	F CI N Bn	84	80
8°	2	Bn	Cl	Cl	2.5	4	$\begin{array}{c} CI \qquad (CH_2)_2NH_2\\ CI \qquad N\\ CI \qquad Bn \end{array}$	85	82
9	3	CH ₃	Н	Н	5.0	24	$(CH_2)_3NH_2$ CH_3 CH_3	63	60
10	3	CH ₃	CH ₃	Н	5.0	24	H ₃ C (CH ₂) ₃ NH ₂ (CH ₃) CH ₃ CH ₃	78	67
11	3	CH ₃	Cl	Н	5.0	24	CI CI CH ₂) ₃ NH ₂ CH ₃ CH ₃	64	60
12	3	CH ₃	OCH ₃	Н	5.0	24	H ₃ CO (CH ₂) ₃ NH ₂ (CH ₂) ₃ NH ₂ CH ₃	81	68
13	3	Ph	Н	Н	5.0	24	(CH ₂) ₃ NH ₂ CH ₃ Ph	57	50
14	3	Bn	Н	Н	5.0	24	$(CH_2)_3NH_2$ H_2 H_3	64	55
15°	3	Bn	F	Cl	5.0	24	CI Bn	65	52
16 ^c	3	Bn	Cl	Cl	5.0	24	$\begin{array}{c} CI \qquad (CH_2)_3NH_2\\ CI \qquad N\\ CI \qquad Bn \end{array}$	61	55

^a Reaction conditions: 1.1 mmol chloroalkylalkyne, 1.4 mmol aryl hydrazine, 100 °C, 2 mL toluene.

^b Isolated yield.

^cTwo isomers (4-Cl:6-Cl) were obtained in a 2:1 ratio.

In all cases the conversion was >95% and the yield of the corresponding indole hydrochloride salt was good (50–90%). In general, the indole was isolated as the sole product in excellent regioselectivity.

However, by using disubstituted aryl hydrazines (Table 2, entries 7–8 and 15–16) cyclization to the indole nucleus gave a mixture of two regioisomers, which is well known for other Fischer indole reactions, too.

In conclusion, a new, one-pot method for the synthesis of functionalized tryptamines and tryptamine homologues has been developed. Starting from commercially available aryl hydrazines and chloroalkylalkynes a variety of potentially active indoles are obtained highly selectively in the presence of a catalytic amount of **1**. We believe that the presented approach constitutes the most efficient access for the here shown substituted tryptamines and tryptamine homologues. Further investigations of this method using other titanium catalysts are currently under way in order to allow the synthesis of indoles, which are not substituted at the 2-position.

Acknowledgements

This work has been supported by the State of Mecklenburg-Vorpommern. In addition financial support from the BMBF (Bundesministerium für Bildung und Forschung) and the VCI are gratefully acknowledged. We thank Mrs. C. Mewes, Mrs. H. Baudisch, Mrs. A. Lehmann, and Mrs. S. Buchholz (all IfOK) for their excellent technical and analytical support.

References and notes

- 1. (a) Campos, K. R.; Woo, J. C. S.; Lee, S.; Tillyer, R. D. Org. Lett. 2004, 6, 79-82; (b) Hong, K. B.; Lee, C. W.; Yum, E. K. Tetrahedron Lett. 2004, 45, 693-697; (c) Köhling, P.; Schmidt, A. M.; Eilbracht, P. Org. Lett. 2003, 5, 3213-3216; (d) Cacchi, S.; Fabrizi, G.; Parisi, L. M. Org. Lett. 2003, 5, 3843-3846; (e) Siebeneicher, H.; Bytschkov, I.; Doye, S. Angew. Chem. 2003, 115, 3151-3153; Angew. Chem., Int. Ed. 2003, 42, 3042-3044; (f) Onitsuka, K.; Suzuki, S.; Takahashi, S. Tetrahedron Lett. 2002, 43, 6197-6199; (g) Rutherford, J. F.; Rainka, M. P.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 15168-15169; (h) Tokunaga, M.; Ota, M.; Haga, M.; Wakatsuki, Y. Tetrahedron Lett. 2001, 42, 3865-3868; (i) Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000, 1045-1075; (j) Verspui, G.; Elbertse, G.; Sheldon, F. A.; Hacking, M. A. P. J.; Sheldon, R. A. Chem. Commun. 2000, 1363–1364; (k) Beller, M.; Breindl, C.; Riermeier, T. H.; Eichberger, M.; Trauthwein, H. Angew. Chem. 1998, 110, 3571-3573; Angew. Chem., Int. Ed. 1998, 37, 3389-3391.
- 2. (a) Hibino, S.; Choshi, T. *Nat. Prod. Rep.* **2002**, *19*, 148–180, and earlier reviews in this series; (b) Szantay, C. *Pure Appl. Chem.* **1990**, *62*, 1299–1302.
- For reviews see: (a) Robinson, B. The Fischer Indole Synthesis; John Wiley & Sons: Chichester, 1982; (b) Hughes, D. L. Org. Prep. Proced. Int. 1993, 25, 607–623.
- (a) Street, L. J.; Baker, R.; Castro, J. L.; Chambers, M. S.; Guiblin, A. R.; Hobbs, S. C.; Matassa, V. G.; Reeve, A. J.; Beer, M. S.; Middlemiss, D. N. J. Med. Chem. 1993, 36, 1529–1538; (b) Castro, J. L.; Matassa, V. G. Tetrahedron Lett. 1993, 34, 4705–4708; (c) Chen, C.; Senanayake, C. H.; Bill, T. J.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. J. Org. Chem. 1994, 59, 3738–3741; (d) Simeone, J.; Bugianesi, R. L.; Ponpipom, M. M.; Goulet, M. T.; Levorse, M. S.; Desai, R. C. Tetrahedron Lett. 2001, 42, 6459–6461; (e) Gorohovsky, S.; Meir, S.; Shkoulev, V.; Byk, G.; Gellerman, G. Synlett 2003, 1411–1414.
- Cao, C.; Shi, Y.; Odom, A. L. Org. Lett. 2002, 4, 2853– 2856.
- For reviews see: (a) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675–703; (b) Seayad, J.; Tillack, A.; Hartung, C. G.; Beller, M. Adv. Synth. Catal. 2002, 344, 795–813; (c) Nobis, M.; Drießen-Hölscher, B. Angew. Chem. 2001, 113,

4105–4108; Angew. Chem., Int. Ed. 2001, 40, 3983–3985; (d) Brunet, J.-J.; Neibecker, D. In Catalytic Heterofunctionalization; Togni, A., Grützmacher, H., Eds.; Wiley– VCH: Weinheim, 2001; (e) For a personal account see: Beller, M.; Breindl, C.; Eichberger, M.; Hartung, C. G.; Seayad, J.; Thiel, O. R.; Tillack, A.; Trauthwein, H. Synlett 2002, 1579–1594.

- (a) Hartung, C. G.; Tillack, A.; Trauthwein, H.; Beller, M. J. Org. Chem. 2001, 66, 6339–6343; (b) Tillack, A.; Garcia Castro, I.; Hartung, C. G.; Beller, M. Angew. Chem. 2002, 114, 2646–2648; Angew. Chem., Int. Ed. 2002, 41, 2541– 2543; (c) Garcia Castro, I.; Tillack, A.; Hartung, C. G.; Beller, M. Tetrahedron Lett. 2003, 44, 3217–3221; (d) Tillack, A.; Jiao, H.; Garcia Castro, I.; Hartung, C. G.; Beller, M. Chem. Eur. J. 2004, in press.
- 8. With regard to the mechanism it is important to note that we cannot exclude nucleophilic substitution taking partly place at the stage of the aryl hydrazone or chloroalkylalkyne.
- Duff, A. W.; Kamarudin, R. A.; Lappert, M. F.; Norton, R. J. J. Chem. Soc., Dalton Trans. 1986, 489–498.
- 10. Khedkar, V.; Tillack, A.; Beller, M. Org. Lett. 2003, 5, 4767-4770.
- For reviews on the use of this complex see: (a) Rosenthal, U.; Burlakov, V. V.; Arndt, P.; Baumann, W.; Spannenberg, A. Organometallics 2003, 22, 884–900; (b) Rosenthal, U.; Burlakov, V. V. In *Titanium and Zirconium in Organic* Synthesis; Marek, I., Ed.; Wiley–VCH: New York/Weinheim, 2002; pp 355–389. The so-called Rosenthal catalysts are commercially available from Fluka.
- 12. Typical reaction procedure: (Table 2, entry 2): In an Acepressure tube under an argon atmosphere a solution of catalyst 1 in 2mL toluene was added to a mixture of 110 µL (113 mg, 1.1 mmol) 1-chloro-4-pentyne and 190 µL (191 mg, 1.4 mmol) N-methyl-N-(4-tolyl)hydrazine. The reaction mixture was heated at 100 °C for 24 h. During this time the corresponding 2-(1,2,5-trimethyl-1H-indol-3yl)ethylamine hydrochloride precipitated. The mixture was diluted with 5 mL hexane and the precipitate was filtered off. Yield 170 mg (65%). For isolation of the free 2-(1,2,5trimethyl-1H-indol-3-yl)ethylamine, the hydrochloride was dissolved in 20 mL water and NaOH was added until the solution reached a pH of 9. Then 20 mL CH₂Cl₂ were added and the organic layer was separated. The aqueous phase was washed twice with 10 mL CH₂Cl₂ and the combined organic phases were dried over anhydrous MgSO₄. After evaporation of the solvent 2-(1,2,5-trimethyl-1H-indole-3-yl)ethylamine was obtained as brown oil. Yield 133 mg (60%). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.29$ (s, 1H), 7.10 (d, J = 8.3 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 3.57 (s, 3H), 2.91 (t, J = 6.4 Hz, 2H), 2.82 (t, J = 6.4 Hz, 2H), 2.43 (s, 3H), 2.32 (s, 3H), 1.32 (bs, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 134.9$, 133.5, 127.9, 127.7, 121.9, 117.6, 108.1, 107.7, 42.8, 29.3, 28.5, 21.3, 10.2. MS (EI, 70 eV): m/z (rel. intensity) = 202 (16, M⁺·), 172 (100), 157 (8), 128 (3), 115 (6), 91 (3), 77 (2), 51 (2), 30 (6). IR (neat, cm^{-1}): 3340, 3250, 3161, 1577, 1462, 1373, 785. HRMS Calcd. for C₁₃H₁₈N₂: 202.14700. Found: 202.14733. All compounds were characterized by ¹H NMR, ¹³C NMR, MS, and IR spectroscopy. New compounds were further characterized by HRMS (highresolution mass spectrometry).